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Abstract—An exact analytical solution is found for unsteady heat transfer, in the first time domain,
for a fluid flowing in a laminar, fully developed manner in a duct when the wall temperature is suddenly
changed to 0, = bx". The solution to the governing partial differential equation is effected by the use of
the Laplace transform and yields the transient surface heat flux as a function of time and position down
the duct for n = 1-6. For comparison purposes, solutions are also obtained for a number of approximate
models, namely, pure conduction, slug flow, quasi-steady, and a new model proposed by Sucec.

INTRODUCTION

UNSTEADY heat transfer to a fluid flowing in a duct is
a problem which commonly arises in heat exchangers,
jet engines, and nuclear reactors.

Perlmutter and Siegel [1], and Siegel {2], use the
approximate integral method to solve the transient in
a duct flow when the wall temperature is step changed
or varies arbitrarily with time, respectively. Siegel and
Perimutter [3], by using a slug flow velocity profile,
deal with unsteady channel flow with surface heat flux
varying with time and position. Krishnan [4], by use
of Laplace transforms, finds a solution in time domain
1 (¢ < x/up,,) to the conjugated problem of heat trans-
fer in a pipe the outer wall of which is subject to a
step change in either temperature or heat flux. Lin and
Shih [5] use the approximate ‘instant local similarity’
method to analyze laminar flow with appreciable vis-
cous dissipation in ducts when the wall temperature is
abruptly changed. Their procedure leads to a solution
valid at> small times. Numerical finite difference
methods are utilized by Chen et al. [6] and by Soma-
sundaram et al. [7] to handle duct flow for step
changes at the duct wall. Cotta and Ozisik [8] develop
an approximate analytical solution with integral
transforms for the case of a step change in pipe wall
temperature when the flow inside the pipe is laminar.

In the present work, analytical solutions are con-
sidered for the problem of steady, laminar, constant
property flow in a parallel plate duct when a transient
is initiated by a sudden change in duct wall tem-
perature to a power function in x, 6, = bx". The
motivation for this work arose from an approximate
analytical model for transient conjugated convection
problems which is developed and tested in ref. [9]. As
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evidenced there, this model does very well for second
time domain problems (¢ > x/u,,,). However, suc-
ceeding work indicated some ambiguity in the model,
along with poorer predictions in time domain I,
t < X[uqq,. So it was with the intent to develop a better
approximate analytical model in this time domain to
be used ultimately on conjugated problems that led to
the exact, and approximate analytical solutions, in the
present work. The wall temperature distribution used,
0, = bx", was selected to test the analytical model,
developed for the first time domain, with a set of
functions, 1, x, x? x°, etc. which can be used to
represent any other function by a series of such terms.

The approximate analytical solution developed
here, as well as the predictions of other approximate
models in the first time domain, will be compared with
the exact analytical solution, found in the present
work, for the transient surface heat flux and in some
cases, the bulk mean temperature. These other
approximate models are the slug flow model and the
pure conduction model, both of which are discussed
in Soliman and Johnson [10, 11}, and the quasi-steady
model.

Both the exact solution and the approximate ana-
lytical model developed can be applied to the general
case of wall temperature being an arbitrary function
of time and position along the duct.

ANALYSIS

The physical situation consists of a paralle] plate
duct with half height R through which a constant
property fluid is flowing in a steady, laminar, fully
developed fashion. Viscous dissipation effects and
axial conduction within the fluid are negligible. The
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aq.a, coefficients in the velocity profile of
equation (4)

coefficients in the wall temperature
distribution as in equation (27)

Ci,  coefficients defined in equation (18)
F Fourier number, af/R?

g; defined by equation (17}

surface coefficient of heat transfer
index

thermal conductivity of fluid

index

power on x in the wall temperature
distribution

Nusselt number, 2ZR/k

Laplace transform parameter
surface heat flux

non-dimensional surface heat flux,
R\/nq./kB

half height of the parallel plate duct
time

local and initial temperature of the fluid,
respectively

b, B

33 xS

HTx® QO™ Z

>

NOMENCLATURE

U, Uy, U, lOcal, average, and maximum
fluid velocity, respectively

x space coordinate along duct

X non-dimensional space coordinate,
ax/Ru,

¥ space coordinate perpendicular to duct
wall

Y non-dimensional space coordinate, y/R.

Greek symbols
a thermal diffusivity of fluid

0 local temperature excess, 7T—T;
05,8, bulk mean and wall values of §
¢ dummy integration variable for

T F-X
s non-dimensional bulk mean temper-
ature, \/n 0g/B.

Superscript
Laplace transform with respect to F.

flowing fluid and duct walls are both at an initial
constant temperature T; when, suddenly, the duct wall
temperature excess is changed to 8, = x". The prob-
lem is to predict the time and space varying surface
heat flux and the fluid’s bulk mean temperature in the
thermal entrance region of the duct during the first
time domain.

With the temperature excess defined as 0(x, y,?) =
T(x, y, )—T; and using the following non-dimensional
independent variables, F=at/R? X = ax/R%u,,
Y =y/R, the thermal energy equation for the
problem is

o8  u(Y) o8

oF u,

_ 0%
ox  arY

The development of the solution to equation (1)
will be carried out first for the general case of wall
temperature being an arbitrary function of non-
dimensional time, F, and axial coordinate X. In the
first time domain, F < 2X/3, the fluid which was at
the duct entrance at F =0 has not yet reached the
position X of interest and, hence, the inlet boundary
condition is not relevant to the problem in this
domain. Transforming to a new X-like independent
variable, t = F— X, as per the development in ref. {9],
gives the following mathematical problem statement :

20 u(yylee 0%
5?4{2———]—----— @

um

M

80,7, Y) =0, 8(F,1.0)=0.(F1)
O(F,t, Y = 20) = finite. 3)

The velocity profile for laminar, fully developed
flow in a parallel plate duct is given as

(V) uy = agY+a,Y? 4)
where

a0=3, a, = "3/’2.

It is noticed that even though the initial condition
is independent of 7, and that the inlet boundary con-
dition need not be satisfied in this first time domain,
there is still dependence of the solution on the x-like
coordinate 1 because of the wall temperature depen-
dency on 1. Thus, the problem is not a pure con-
duction problem, the convective transport term on the
left-hand side of equation (2) must be retained and
the velocity profile, equation (4), is needed in equation
(2) and also in the evaluation of the bulk mean tem-
perature,

To solve equation (2) subject to equation (3), the
Laplace transform is taken with respect to dimen-
sionless time F. Thus the temperature excess in the
transform plane is defined as

0=J ‘Be“’FdF. (5)

0

Taking the transform of equations (2) and (3) gives
3*g w(Yylaf
é?"”g‘[l“Tm'}é? ®

8(p,7,0) = 0,(p,7), B(p.7, Y — o) = finite.
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The initial approach to the solution of equation (6)
was by successive approximations whereby an initial
estimate of 80/dr is inserted into the right-hand side of
equation (6), the resultant non-homogeneous partial
differential equation is solved for §(p, 1, Y) which is
then inserted back into the right-hand side of equation
(6) to give a second approximation to 8/dtr. This
cycle is then continually repeated until two successive
solution functions are close enough to each other. In
this work, the initial approximation to 88/dt was
taken as 80, /0t. Proceeding for four iterations it was
noticed that a series solution of the following form
was being developed :

o,

0(p,7. Y) = folp, N0+ /(0. V) 5

&g,
+HE N O

The coefficient functions, f,, f;, etc. had unchanging
form with additional iterations as soon as any one of
them had been used twice in the successive approxi-
mations procedure.

The heat flux in the transform plane is given by

. —kfa0
qv="¢ (5'}7),,‘ . _ ®)

Equation (7) was inserted into equation (8) and the
result was inverted back to the physical plane. This
gave the following three integral term approximation
to g,:

1
J(F,
w(b0) = U JF—o)

[ [adF=0)  a _ 1 ]%

” 2r T4 ajar-anl e

_I’[\/(F—o) .- )+(§<§_g>(r—a)"=
0

adn 2%°"2) n

1y 1942 (F—a)’/l]azo }
(F-0)2+ “eojr o do+ -

a0,
F ¢

Oal

(€)

The first integral in equation (9) can be shown to
be the exact analytical solution for a slug velocity
profile, u(Y) =u,. If the wall temperature dis-
tribution were independent of X, then 46,/0X =
00,,/0t =0 and all integrals vanish except for the
first one. In this case, 66, /6X = 0, equation (1) shows
the problem to be a pure conduction problem which
has the same exact solution as for the slug vel-
ocity profile, namely the first integral in the series
given by equation (9). Thus the integrals beyond the
first one in equation (9) give the effect of the actual
non-slug velocity profile on the wall heat flux.

As an approximate analytical solution function for
the transient heat flux, it is proposed to take the first
two integrals giving
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_{ 1 8
Rl Ja(F=)) 80

_ Fla,J(F-o) a 1 ]_6& }
.“: 2 & 2jmF-onl dey-

(10)

The mode! of equation (10) eliminates the ambi-
guity in the analytical model in time domain I of ref.
[9] and is proposed for use in both conjugated and
non-conjugated problems. This model will be tested
later in this work by comparing it to some exact solu-
tions.

The four successive approximations which led to
equation (7) suggest that the form of the solution in
the transform plane becomes

d,
0p.7. Y) = zof,(p no P an
where
2°d,
Fd - = .

Using equation (11) in differential equation (6), gives,
after rearrangement
—pf;)

dz » £ dZ |
(?-% P °)+,§. [(cu{
o'd,

—(1—-asY—a,Y¥f;. :] b

=0. (12)
Requiring that the coefficients of &/0, /7’ vanish for
all j yields the following set of ordinary differential
equations for the f; functions needed in the solution
given by equation (11). Hence

dz

L pho=0 13
d2
de; -pfi=(=ayY—a,Y)f,_,. (14)

The boundary conditions on equations (13) and (14)
are given by

Y=0, g=6w’ f0=1’ f}=0s J?l
Yoo, f= (15)

With equations (13)-(15) in hand, it is no longer
necessary to use successive approximations formally,
instead these equations are used to solve directly for
fo(P, Y)’ fl (P, Y)a etc.

Solution of equation (13) and application of bound-
ary conditions (15), yields

fo = e“/”y. (16)

This is now inserted into equation (14) and f is solved
for and so on. Actually, much of the work needed to
solve equation (14) for f, when j > 0 can be reduced.
A study of the structure of equation (14), the f,, solu-

finite.
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tion of equation (16), and the boundary conditions of
equation (15) indicates that the functional form of

every f;is
fi=g/Yye vp¥ an

where g,(Y) is a polynomial in Y of lowest order Y
and highest order ¥ the coefficients of which are
dependent upon p. Thus, equation (17) can be further
rewritten as

3
fip.Yy=e VY 3 CLY"

m=0

(13)

where C/, is the p dependent coefficient. Substitution
of equation (18) into equation (14) gives the set of
simultaneous algebraic equations

2mJp Chy~m(m+1)Ch,

=4a H C;';:_lj +00C£,"._|2 - Ci:.lg 3 m> 0.

(19)
Also
Co=1, C,=0 {m>3jorm<1,j>0} (20)

Combining equations (18) and (11) gives the solution
in the transform plane as

Fmocie’ 3 {z ci rm}a;‘{ .

F=0 \m=0

@n

Using equation (21) in equation (8) gives the heat flux
in the transform plane

Equations (21) and (22) are the exact analytical
solutions in the transient thermal entrance region of
time domain I, F < 2X73, for an arbitrary duct wall
temperature distribution 6, = 6, (F, X), once the
algebraic equations, equations (19), are solved for the
Ci.

Equations (19) were solved by hand for C/,(p) (the
coefficients contain the transform parameter p in
them) for j = 1-4 and then equation (22) was inverted
to give the flux, g,, in the physical plane as a sum of
integral expressions, the first three of which were given
earlier in equation (9). However, as j increases, the
algebraic work needed to find g,, rapidly increases. To
alleviate this problem, the analytical procedure was
put on to the computer using a symbolic programming
package called REDUCE. Symbolic programming
allows symbolic mathematical operations, such as
addition, multiplication, integration, and inversion,
to be carried out yielding the same analytic, not
numerical, expressions, as those done by hand. This
was carried out to j = 6 giving a flux expression like
that of equation (9), but with seven integrals instead
of three. This expression for g,,, when j = 6, occupies
almost two full pages of standard size typing paper
and is available in ref. [12]. The test cases indicate that
the approximate analytical expression of equation
(10), which uses just two integrals is highly accurate
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and should suffice. The three integral expression has
already been given as equation (9) and the fourth
integral to be inserted inside the curly brackets of
equation (9) is given as

ST
12\/n

Sai\ (F—o)*?
+(7{"§Z) Jn

+G 9aoa,> o)’

= (F-0)?

22la.a0 l9a. (F—a)”
840 60 \/n
51a,a0 B
256 L9
631 3 Fe /2 3
Blailf-) 7 ]a % 4. @3)
3780/ ot

It must be kept in mind that the first integral appearing
in equation (9) or (10) is a Stieltjes integral.

The bulk mean temperature of the fluid as a func-
tion of axial coordinate and time is found by use of
its definition, namely

982‘( 3(—}36(1‘1- Y)dY.
U,

m

24

Taking the Laplace transform with respect to F of
equation (24), and changing the upper limit because
of the thermal entrance region being considered,
yields

G = j (agY+a,Y(p,1, V)dY. (25

0
Inserting the expression for #, equation (21), into
equation (25) gives the transformed bulk mean tem-
perature. Taking the inverse Laplace transformation
produces the bulk mean temperature in the physical

plane when three terms of the series in equation (21)
are used

05 (F, 1) = j‘ ’ [ao + 4—"“/7(‘:—“9]&(0, 7 de

g 8 F—g)¥"
+J; {wao(F—a)+(§a§—4al)Lr/lg—~
4403 (F—)%?) (26,
Z W }(‘&”)ad“
F {ag(F—0a)* (F-a)’?
+£ { 2 (2 “T3e 0) Jr

5 27
+ (Za?,—v --2‘-~a(,a,>(1"—a)3

1651ada, 308a}\(F—q)"?
*\ 05 21 ) Jn

27
+ a0, (F—~0)*+
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+ acai(F—o)*
i 774a%(£-o)°’-2} (a’ow)
b M=) de+ - 26
315x a0 @9
Solutions for 0,, = bx"

As is evident by inspection of equations (21) and
(22), exact solutions in closed form are possible when
¥4, ; .
= 0 forj> a finite integer suchas n.
A class of wall temperature distributions which satisfy
this condition is 8, = bx". This class, as mentioned
earlier, also allows the study of the probable per-
formance of our approximate analytical two-term
model, equation (10), on more general surface tem-
perature distributions which are, in effect, composed
of these fundamental harmonics, 1, x, x% x3,...,
x",... which can serve as base vectors in function
space in the same role performed by sine functionsina
Fourier sine series expansion of an arbitrary function.
The wall temperature distribution in the F, t vari-
ables required in the analytical expressions for ¢, is
given as

0, = B(F—1)". @n

Inserting the needed derivatives of 8, into the
version of equation (9) which contains seven integrals,
forn=1-6in equanon (27), yields the exact solution
for the wall flux since 8/8,/0t' =0 for j> n, for
these six wall temperature distributions. Only the
expressions for the non-dimensional flux Q for n = 1
and 2 will be displayed here while the results in the
figures will be for all six cases:

n=1
Q= [_rF—|/2+2F|/2]+[9§'_F3/2_F|/2+ao\éﬂp];
(28)

n=2

Q — [121" !,’2+ §F3]2“4TF”2]

[4a' F9 -

2a,
15 3

P gF”’+2tF""

1942

2
ISF

+ a;,;/n i ag/n

3 rF]-!—{:
2a, aé) g2 F7?
+(5 §)F 73

3alaan Pt a.,Jn F’]

T 29)

In equations (28) and (29), the square brackets
separate the contributions of the individual integrals
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of the seven-term version of equation (9). Thus, the
exact solution contains only two terms for n = | since
&/8,/61 = 0 for j > 1 and, in equation (29) the three
terms shown are the exact solution since derivatives
with respect to 7 under the integral signs vanish for
j>2.

Next, the bulk mean temperature is evaluated for
n =1 and 2 in equation (27) by use of equation (26)
which yields the following expression for n = 1. The
result for n = 2 is not shown for the sake of brevity.

Forn=1,8, = bx = B(F—1)

15/n 3J/n
88aiF"* 9a,a,F’
-B
[ 21x +—3
1662 82, ., @oF

In equation (30), the square brackets enclose the con-
tributions of the individual integrals of equation (26).

—agtF+

8a,rF"”]

The approximate solutions

As discussed earlier, the approximate analytical
model being proposed in this work is the truncation
of our exact solution, equation (9), after the first two
integrals and is given as equation (10) for the heat
flux and as the first two integrals of equation (26) for
the bulk mean temperature.

The slug flow approximate model can be shown to
be the first term of equation (9) for the heat flux.

The pure conduction approximate solution is found
by setting a, = a, = 0, to give zero velocity in the duct.

The final approximate model to be tested is the
quasi-steady solution employing the constant surface
coefficient of heat transfer, &, appropriate to steady
flow through a duct the wall of which is isothermal.
Solution of an energy balance on the fluid in t—F
variables for 8, = BX" gives the quasi-steady bulk
mean temperature as

b5

. N —t_ n(n l)
5= [—(—‘f) +5(=9

(=2

+W(_r)"-’+ -‘-]c'”‘"

nin—1)
N?

+[{F—r)ﬂ~-§,(F—r)*" F-n-?

2= D0D (porprs ]

The non-dimensional quasi-steady flux, Q, is given by

Q=n N[X"-— %’].

@Gn
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FiG. 1. Axial variation of flux at different times.

RESULTS AND DISCUSSION

By setting the coefficients in the velocity profile,
equation (4), equal to their respective values for this
problem, namely, a, =3, a, = —3/2, in equations
(28) and (29), and in equation (30), one obtains the
exact solution for the flux and bulk mean temperature,
respectively. For the surface heat flux, this was also
carried out for n = 3-6 in equations which, because
of their length, were not included here for the sake of
brevity. Results are also obtained, for these same
cases, from the approximate analytical model being
proposed herein, namely, equation (10) for the flux
and the first two integrals in equation (26) for the
bulk mean temperature. Note that the exact solution
functions, which can be applied to any arbitrary
0,(F,X), and not just to the class 8, = bx" being
considered here, are given by equations (9) and (26).

In addition, results were also found for the three
approximate models used previously in the literature,
namely, the slug flow, pure conduction and quasi-
steady models.

Looking at the plotted results, at F = 0.05, for the
flux when 6, = bx in the lower half of Fig. 1, one
sees trends for the various earlier approximate models
which are also reflected in the figures for the other
cases for n, n = 2-6. The slug flow model, because of
its use of a velocity profile which gives velocities near
the wall which are higher than the actual velocity
profile, equation (4), yields a higher surface heat flux
than does the exact solution and all the approximate
models. The pure conduction model gives a smaller
surface heat flux than the actual flux because of its
use of zero velocity throughout the fluid thus remov-
ing the convective energy transport mechanism from
the situation. The quasi-steady approach, the bottom
curve in the figure at F = 0.05 gives a much smaller
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4.0 -1 -
0.10
3.0 h [F0.20
o F=0.38
20 - L
1.0 B L
0 5.0 y T T — o
0.2 04 x 0.6 0.8 F=0.05
— Exact -
4.0 Eq. (10} @ Approx. Analytical
3.0 1
(e}
2.01
1.0 1
0 T

T T T T
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X

FiG. 2. Axial variation of flux at different times.

flux than actually occurs because of its use of the
relatively low surface coefficient of heat transfer for
steady flow through an isothermal duct. This error is
particularly large at the low times, such as F = 0.05,
because of the very high energy transfer rates due to
a thin thermal boundary layer at low values of F. For
this case, 6, = bx, the approximate analytical model
of this work gives the exact result, and hence, plots
right on top of the exact solution. This results from
the fact that our two-term approximation, equation
(10), is exact for the case of n = 1 and also, inciden-
tally, is exact for the case of n = 0. At a large value
of time, such as F = 0.35 in Fig. 1, the trends for the
various approximate models are basically the same
as previously described except for the quasi-steady
solution which provides a better prediction than does
the pure conduction solution.

For the cases of n = 2, 3, and 6 in equation (27),
surface heat flux results for the exact solution, and for
the approximate model of this work, are given in
Figs. 1-4 for a number of different times F. Selected
comparisons of the exact solution with the other
approximate models are given in Figs. 1 and 4. As is
evident from the figures, the approximate analytical
model, even though it is not the exact solution for the
cases of n=2-6 as it was for n =1, is essentially
indistinguishable from the exact solution for the scale
used on the graphs. Thus, only a few typical predic-
tions, the circles, are shown for the approximate ana-
lytical solution. One can discern a slight difference
between exact and approximate analytical solutions
in Fig. 4 at F = 0.35 where the approximate analytical
prediction is slightly higher than the exact results.
Hence, the two-term representation of the flux in the
approximate analytical model, equation (10), gives
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Fi1G. 3. Axial variation of flux at different times.

excellent results even for the higher level harmonic of
n=56.

Looking at the predictions of the other approximate
models for n> 1 in the upper half of Figs, 1 and
4, the general trends are the same qualitatively, as
previously discussed for n =1, but the errors are
greater in magnitude for the higher values of n,
such as n = 6, than for the case of n = 1.

The comparisons of the exact solution for the bulk
mean temperature with the approximate analytical

T T T T
0 02 04 08 08 10
X

Fi1G. 4. Axial variation of flux at different times.
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F1G. 5. Axial variation of bulk mean temperature.

model of the present work is shown in Figs. 5 and 6.
Again, the approximate model is also the exact solu-
tion when # = 1 and, as was also the case for the flux,
is essentially coincident with the exact solution at the
higher value of n. The other approximate models give
significant error.

CONCLUSION

An exact analytical solution has been found for the
problem being considered, namely, unsteady thermal
entry heat transfer within a parallel plate duct in the
first time domain with 8, = bx". An approximate ana-

‘ c - 3 L ) S L A
0.8
0.6 O = BX
= F=0.358
S
0.4
021
0 L3 3 R L]
o 02 04 x 08 08 10
0.8 Exact &
- €g (W0} * Approx. Analytical
mmmmvme Conduction
0.6
s
0.4
02 J
4]

T T T T T
0 02 04 08 08 10
X

F1G. 6. Axial variation of bulk mean temperature.
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fytical model has also been developed which yields
results of very high accuracy, even for the higher level
harmonic represented by n = 6 in 0, = bx". Hence,
this model should be able to be employed with high
accuracy on problems of arbitrary variation of wall
temperature with F and X and, therefore, also on
transient conjugated problems.

If there is interest in even higher accuracy or in
checking the magnitude of the contributions of inte-
gral terms, beyond the first two, which are neglected
in equation (10), equation (9) can be used. Equation
{9) gives the exact solution for 8, = bx" using a finite
number of terms and represents the exact solution for
any 0.(F,X) if one retains all the integrals in the
infinite series.

It is found that the more traditional approximate
models, slug, pure conduction, and quasi-steady,
exhibit appreciable error in their predictions of flux
and bulk mean temperature, An exception to this
occurs at low times for the pure conduction model.
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CONVECTION THERMIQUE FORCEE VARIABLE DANS UN CANAL

Résumé—On trouve une solution analytique exacte pour le transfert thermique variable, dans les premiers
instants, pour un fluide s’écoulant de fagon laminaire, pleinement établie dans une conduite, avec une
température pariétale qui est brusquement changée selon 8, = bx". La solution de I'équation fondamentale
aux dérivées partielles est obtenue par utilisation de la transformée de Laplace et elle fournit le flux
thermique variable 4 la paroi en fonction du temps et de la position en aval pour n = [ 6. Pour permettre
des comparaisons, des solutions sont aussi obtenues pour plusieurs modéles approchés et nomément,
conduction pure, écoulement piston, état permanent et un nouveau modéle proposé par Sucec.

INSTATIONRARE ERZWUNGENE KONVEKTION IN EINEM KANAL

Zusammenfassung—Der instationidre Wiirmeiibergang in einer laminaren, voll ausgebildeten Stromung in
einem Kanal, dessen Wandtemperatur sich plotzlich gemaB 8, = bx" dndert, wird fir einen ersten
Zeitabschnitt exakt analytisch berechnet. Die zugrundeliegende partielle Differentialgleichung wird durch
die Anwendung der Laplace-Transformation geldst. Dabei ergibt sich die zeitlich verdnderliche Ober-
flichenwirmestromdichte als Funktion von Zeit und Ort entlang des Kanals fiir n = | bis 6. Zu Ver-
gleichszwecken werden auch Losungen fiir eine Anzahl von Niherungsmodellen bestimmt, nimlich fiir
reine Wirmeleitung, Kolbenstromung, quasi-stationdren Zustand sowie fiir ein neues Modell, das von
Sucec vorgeschlagen worden ist.

TIACNEPEHOC IMPU HECTAIITHOHAPHON BLIHYXIAEHHOW KOHBEKLIMH B KAHAJIE

Ammormimsi—I10y4eHO TOYHOE AaHAJHTHNECKOE PELICHHE [UIA HaUaIbHON CTanHK HECTALMOHAPHOTO Tel-
JIOTIEPEHOCA XHAKOCTH B YCJIOBUSX JIAMHHAPHOTO MOJHOCTBIO PA3IBMTOrO TCHCHMS B XKaHAJE MPH MIHO-
BEHHOM HM3IMEHEHMM Temnepatypsl crenxu no 0, = bx". Ocnosuoe mudpdepeHUnaNbROE ypasheHHE B
YaCTHHX NPOH3BORHKX PEIACTCH € NOMOMBIO Npeobpaiosauns Jlamnaca. Hecraumonapuoe jnavenue
TEMNOBOrO NOTOKA NOMYSEHO Kax QYHRUMA BPEMEHM M XOODIHHATH B XaHane npH n = 1-6. [{n% cpasue-
HHR TAKXe HallQCHBI PeIleHHS ANA pANa npHOMDKeHHBIX Moaene#f, a MMEHHO, YHCTOR TemIONpOBOI-
HOCTH, NOJI3yYero H KBa3HCTALMOHAPHOrO TeYeHHil, 1 11a HOBOR MOACIH, npentoxeHHoi Cacexom,



