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Abstract-An exact analytical solution is found for unsteady heat transfer, in the !irst time domain, 
for a fluid flowing in a laminar. fully developed manner in a duct when the wall temperature is suddenly 
changed to fIW = by. The solution to the governing partial differential quation is effected by the use of 
the Laplace transform and yields the transient surface heat flux as a function of time and position down 
the duct for n = l-6. For comparison purposes, solutions are also obtained for a number of approximate 

models, namely, pure conduction, slug flow, quasi-steady, and a new model proposed by Sucec. 

INTRODUCTION 

UNSTEADY heat transfer to a fluid flowing in a duct is 
a problem which commonly arises in heat exchangers, 
jet engines, and nuclear reactors. 

Perlmutter and Siegel [l], and Siegel [2], use the 
approximate integral method to solve the transient in 
a duct flow when the wall temperature is step changed 
or varies arbitrarily with time, respectively. Siegel and 
Perlmutter [3], by using a slug flow velocity profile, 
deal with unsteady channel flow with surface heat flux 
varying with time and position. Krishnan [4], by use 
of Laplace transforms, finds a solution in time domain 
I (t c x/u,,,~,) to the conjugated problem of heat trans- 
fer in a pipe the outer wall of which is subject to a 
step change in either temperature or heat flux. Lin and 
Shih [S] use the approximate ‘instant local similarity’ 
method to analyze laminar flow with appreciable vis- 
cous dissipation in ducts when the wall temperature is 
abruptly changed. Their procedure leads to a solution 
valid at‘ small times. Numerical finite difference 
methods are utilized by Chen et 01. [6] and by Soma- 
sundaram et al. [7] to handle duct flow for step 
changes at the duct wall. Cotta and Ozisik [8] develop 
an approximate analytical solution with integral 
transforms for the case of a step change in pipe wall 
temperature when the flow inside the pipe is laminar. 

In the present work, analytical solutions are con- 
sidered for the problem of steady, laminar, constant 
property flow in a parallel plate duct when a transient 
is initiated by a sudden change in duct wall tem- 
perature to a power function in X, 6, = bx”. The 
motivation for this work arose from an approximate 
analytical model for transient conjugated convection 
problems which is developed and tested in ref. [9]. As 

evidenced there, this model does very well for second 
time domain problems (t > x/u_). However, suc- 
ceeding work indicated some ambiguity in the model, 
along with poorer predictions in time domain I, 
t < x/u,,,,. So it was with the intent to develop a better 
approximate analytical model in this time domain to 
be used ultimately on conjugated problems that led to 
the exact, and approximate analytical solutions, in the 
present work. The wall temperature distribution used, 
e, = bx”, was selected to test the analytical model, 
developed for the first time domain, with a set of 
functions, 1, x, x2, x3, etc. which can be used to 
represent any other function by a series of such terms. 

The approximate analytical solution developed 
here, as well as the predictions of other approximate 
models in the first time domain, will be compared with 
the exact analytical solution, found in the present 
work, for the transient surface heat flux and in some 
cases, the bulk mean temperature. These other 
approximate models are the slug Sow model and the 
pure conduction model, both of which are discussed 
in Soliman and Johnson [ 10,l I], and the quasi-steady 
model. 

Both the exact solution and the approximate ana- 
lytical model developed can be applied to the general 
case of wall temperature being an arbitrary function 
of time and position along the duct. 

ANALYSIS 

The physical situation consists of a parallel plate 
duct with half height R through which a constant 
property fluid is flowing in a steady, laminar, fully 
developed fashion. Viscous dissipation effects and 
axial conduction within the fluid are negligible. The 
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NOMENCLATURE 

a,, a, coefficients in the velocity profile of n* r&l 7 urn, local, average, and maximum 
equation (4) fluid velocity, respectively 

b, B coefficients in the wall temperature x space coordinate along duct 
distribution as in equation (27) X non-dimensional space coordinate, 

cg coefficients defined in equation (I 8) ~_~~R~~~ 
F Fourier number, x$/R’ I’ space coordinate perpendicular to duct 

gj defined by equation (17) wall 
h surface coefficient of heat transfer Y non-dimensional space coordinate, y/R. 

j index 
k thermal conductivity of fluid 
m index Greek symbols 
n power on x in the wall temperature thermal diffusivity of fl uid 

distribution ; local temperature excess, T- K 
N Nusseh number, hR/k B,, 0, bulk mean and wail values of 9 

P Laplace transform parameter (i dummy integration variable for F 

4w surface heat flux F-X 

Q non-dimensional surface heat flux, it3 non-dimensional bulk mean temper- 

R Jn qwlkB ature, JTK 0,JB. 
R half height of the parallel plate duct 
t time 
T, 6 local and initial temperature of the fluid, Superscript 

respectively Laplace transform with respect to F. 

flowing fluid and duct walls are both at an initial 
constant temperature Ti when, suddenly, the duct wall 
temperature excess is changed to 0, = bx”. The prob- 
Iem is to predict the time and space varying surface 
heat flux and the fluid’s bulk mean temperature in the 
thermal entrance region of the duct during the first 
time domain. 

With the temperature excess defined as O(x,y, t) = 
T(x, y, t) - T and using the following non-dimensional 
independent variables, F = at/R2, X = ax/R2u,,,, 
Y =y/R, the thermal energy equation for the 
problem is 

ao 
ZF + 

4 n 
% 

as a26 
z=JpYZ’ (1) 

The development of the solution to equation (1) 
will be carried out first for the general case of wall 
temperature being an arbitrary function of non- 
dimensional time, F, and axial coordinate X. In the 
first time domain, F c 2X/3, the fluid which was at 
the duct entrance at F = 0 has not yet reached the 
position X of interest and, hence, the inlet boundary 
condition is not relevant to the problem in this 
domain. Transforming to a new X-like independent 
variable, t = F-X, as per the development in ref. [9], 
gives the following mathematical problem statement : 

g+ I- 
u(~) de a*e 

[ 1 u, ?-i=au2 (2) 

@(o, z, Y) = 0, @(F, t, 0) = &(F, t) 

B(F, 5, Y + co) = finite. (3) 

The velocity profile for laminar, fully developed 
flow in a parallel plate duct is given as 

where 

n(Y)/& = a,Y+a, YZ (4) 

a,, = 3, a, = -312. 

It is noticed that even though the initial condition 
is independent of 5, and that the inlet boundary con- 
dition need not be satisfied in this first time domain, 
there is still dependence of the solution on the x-like 
coordinate r because of the wall temperature depen- 
dency on T. Thus, the problem is not a pure con- 
duction problem, the convective transport term on the 
left-hand side of equation (2) must be retained and 
the velocity profile, equation (4). is needed in equation 
(2) and also in the evaluation of the bulk mean tem- 
perature. 

To solve equation (2) subject to equation (3). the 
Laplace transform is taken with respect to dimen- 
sionless time F. Thus the temperature excess in the 
transform plane is defined as 

LX . s 63 e-*‘dF 
0 

Taking the transform of equations (2) and (3) gives 

B(p, r, 0) = &(p, r), B(p, z, Y + 00) = finite. 
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The initial approach to the solution of equation (6) 
was by successive approximations whereby an initial 
estimate of d6/dr is inserted into the right-hand side of 
equation (6), the resultant non-homogeneous partial 
differential equation is solved for &,r, Y) which is 
then inserted back into the right-hand side of equation 
(6) to give a second approximation to df?/dr. This 
cycle is then continually repeated until two successive 
solution functions are close enough to each other. In 
this work, the initial approximation to Z~&dr was 
taken as &/c%. Proceeding for four iterations it was 
noticed that a series solution of the following form 
was being developed : 

a2& 
+fz~, v,f,... (7) 

The coefficient functions, fo, f,, etc. had unchanging 
form with additional iterations as soon as any one of 
them had been used twice in the successive approxi- 
mations procedure. 

The heat flux in the transform plane is given by 

. 

Equation (7) was inserted into equation (8) and the 
result was inverted back to the physical plane. This 
gave the following three integral term approximation 
to qw: 

+ 9aoa I 
-yj- (F-u)‘+ 

1ga~~~)“2]$du+ . . ,}. 

(9) 
The first integral in equation (9) can be shown to 

be the exact analytical solution for a slug velocity 
profile, u(Y) = u,. If the wall temperature dis- 
tribution were independent of X, then a&/ax = 
%,/dr = 0 and all integrals vanish except for the 
first one. In this case, Z&/M = 0, equation (1) shows 
the problem to be a pure conduction problem which 
has the same exact solution as for the slug vel- 
ocity profile, namely the first integral in the series 
given by equation (9). Thus the integrals beyond the 
first one in equation (9) give the effect of the actual 
non-slug velocity profile on the wall heat flux. 

As an approximate analytical solution function for 
the transient heat flux, it is proposed to take the first 
two integrals giving 

1 I Sdu . 
(‘0) 

The mode1 of equation (10) eliminates the ambi- 
guity in the analytical model in time domain I of ref. 
[9] and is proposed for use in both conjugated and 
non-conjugated problems. This mode1 will be tested 
later in this work by comparing it to some exact solu- 
tions. 

The four successive approximations which led to 
equation (7) suggest that the form of the solution in 
the transform plane becomes 

aj6 
B(P,T,n= fj,(P,Y)$ 

j-0 
(11) 

where 

Joe;, _ B 
o== w. ar 

Using equation (1 I) in differential equation (6), gives, 
after rearrangement 

(g -Pfo)+j, [(g -a) 

1 

a47 
-(l-a,Y-a, Y2)fj_, -g = 0. (12) 

Requiring that the coefficients of dj&/drj vanish for 
all i yields the following set of ordinary differential 
equations for the fj functions needed in the solution 
given by equation (11). Hence 

d’fo 
@ -Pfo = 0 

~-~~=(l-ooY-a,Y2)j,_,. (14) 

The boundary conditions on equations (13) and (14) 
are given by 

Y = 0, B= 8,, fo = 1, fj = 0, j, 1 

Y + 03, fj = finite. (15) 

With equations (13~(15) in hand, it is no longer 
necessary to use successive approximations formally, 
instead these equations are used to solve directly for 

fob, 0, f I@, Y), etc. 
Solution of equation (13) and application of bound- 

ary conditions (1 S), yields 

fo- * e-JPY 
(16) 

This is now inserted into equation (14) and f, is solved 
for and so on. Actually, much of the work needed to 
solve equation (14) for f, when J’ > 0 can be reduced. 
A study of the structure of equation (14), the f. solu- 
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tion of equation (16), and the boundary conditions of 
equation (15) indicates that the functional form of 
every f, is 

f, = si( Y)e+Jy (17) 

where gj( Y) is a polynomial in Y of lowest order Y 
and highest order Y’j the coefficients of which are 
dependent upon p. Thus, equation (I 7) can be further 
rewritten as 

3j 
f;(p, Y) = e-bjpY C CiYm 

m-0 
(18) 

where CA is the p dependent coefficient. Substitution 
of equation (18) into equation (14) gives the set of 
simultaneous algebraic equations 

2mJp CA -m(m+ l)C;+, 

= a,ci-_;_:+a c’-1 -cj-i 
0 m-2 m-tlr m>O. (19) 

Also 

c:: = 1, CA=0 {m>3jorm<l,j>Of. (20) 

Combining equations (18) and (11) gives the solution 
in the transform plane as 

Using equation (21) in equation (8) gives the heat flux 
in the transform plane 

Equations (21) and (22) are the exact analytical 
solutions in the transient thermal entrance region of 
time domain I, F < 2X/3, for an arbitrary duct wall 
temperature distribution 0, = O,(F, X), once the 
algebraic equations, equations (19), are solved for the 
CL. 

Inserting the expression for 8, equation (21), into 
equation (25) gives the transformed bulk mean tem- 
perature. Taking the inverse Laplace transformation 
produces the bulk mean temperature in the physical 
plane when three terms of the series in equation (21) 
are used 

Equations (19) were solved by hand for C!(p) (the 
coefficients contain the transform parameter p in 
them) fori = l-4 and then equation (22) was inverted 
to give the flux, qw, in the physical plane as a sum of 
integral expressions, the first three of which were given 
earlier in equation (9). However, as i increases, the 
algebraic work needed to find qw rapidly increases. To 
alleviate this problem, the analytical procedure was 
put on to the computer using a symbolic programming 
package called REDUCE. Symbolic programming 
allows symbolic mathematical operations, such as 
addition, multip~cation, integration, and inversion, 
to be carried out yielding the same analytic, not 
numerical, expressions, as those done by hand. This 
was carried out to j = 6 giving a flux expression like 
that of equation (9), but with seven integrals instead 
of three. This expression for qw, when i = 6, occupies 
almost two full pages of standard size typing paper 
and is available in ref. [ 121. The test cases indicate that 
the approximate analytical expression of equation 
(IO), which uses just two integrals is highly accurate 

and should suffice. The three integral expression has 
already been given as equation (9) and the fourth 
integral to be inserted inside the curly brackets of 
equation (9) is given as 

+ 51&X, 
256 (F-@)4 

+ 
631a;(F-~)“2 a%, 

378OJK 1 -p da- (23) 

It must be kept in mind that the first integral appearing 
in equation (9) or (10) is a Stieltjes integral. 

The bulk mean temperature of the fluid as a func- 
tion of axial coordinate and time is found by use of 
its definition, namely 

8, = s ‘u(Y) __ B(F, T, Y) d Y. (24) 
0 % 

Taking the Laplace transform with respect to F of 
equation (24), and changing the upper limit because 
of the thermal entrance region being considered, 
yields 

B t3= Y)dY. (25) 
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+ 11 ?Ra:(F-u)‘!’ 

3154% 
(26) 

Solutions for 0, = bx” 
As is evident by inspection of equations (21) and 

(22), exact sotutions in closed form are possible when 

CR?, 
x = 0 forj 3 a finite integer such as n. 

A class of wall temperature distributions which satisfy 
this condition is 8, = bx”. This class, as mentioned 
earlier, also allows the study of the probable per- 
formance of our approximate analytical two-term 
model, equation (lo), on more general surface tem- 
perature dist~butio~ which are, in effect, composed 
of these fundamental harmonics, 1, x, x2, x3,. . ., 
x” , . . . which can serve as base vectors in function 
space in the same role performed by sine functions in a 
Fourier sine series expansion of an arbitrary function. 

The wall temperature distribution in the F, t vari- 
ables required in the analytical expressions for 9; is 
given as 

0, = B(F--r)“. (27) 

Inserting the needed derivatives of 0, into the 
version of equation (9) which contains seven integrals, 
for n = 1-6 in equation (27), yields the exact solution 
for the wall flux since ar&/ari = 0 for j > n, for 
these six wall temperature distributions. Only the 
expressions for the non-dimensional flux Q for n = 1 
and 2 wiII be displayed here whiie the results in the 
figures will be for all six cases : 

n= 1 

Q = [-rF-“2+2F’/2]+ a0 JnF f+F’i2+ 4 
1 

; 

(28) 

n-2 

+ +31’_ fF”‘+2TF’I’ 

a@Jn F2 

+ 4 

a@ Jn 
- 

2 I[ 
*“: F7/2 --zF f -- 
I05 

~312 
F3’2 _ - 

3 

2 30~0 JQ'+~QJz 
16 

4F . 1 
In equations (28) and (29), the square brackets 

separate the ~ont~butions of the indi~d~1 integrafs 

of the seven-term version of equation (9). Thus, the 
exact solution contains only two terms for n = 1 since 
a~~~~aTj = 0 for j > 1 and, in equation (29) the three 
terms shown are the exact solution since derivatives 
with respect to r under the integral signs vanish for 
j> 2. 

Next, the bulk mean temperature is evaluated for 
n = 1 and 2 in equation (27) by use of equation (26) 
which yields the following expression for n = 1. The 
result for n = 2 is not shown for the sake of brevity. 

Fern= I,@, = bx = B(F-r) 

16a,Fsj2 8a,?F3” 
-a,rF+-------- 

1sJx 3Jr 1 

+(z - !$F=- ~1. (30) 

In equation (30), the square brackets enclose the con- 
tributions of the individual integrals of equation (26). 

The approximate solutions 
As discussed earlier, the approximate analytical 

mode! being proposed in this work is the truncation 
of our exact solution, equation (9), after the first two 
integrals and is given as equation (10) for the heat 
flux and as the first two integrals of equation (26) for 
the bulk mean temperature. 

The slug flow approximate model can be shown to 
be the first term of equation (9) for the heat flux. 

The pure conduction approximate solution is found 
by setting % = a2 = 0, to give zero velocity in the duct. 

The final approximate model to be tested is the 
quasi-steady solution employing the constant surface 
coefficient of heat transfer, It, appropriate to steady 
flow through a duct the wall of which is isothermal. 
Solution of an energy balance on the fluid in T-F 
variables for 9, = BP gives the quasi-steady bulk 
mean temperature as 

@a -= 
B 

-(_*)“+ &(_,.-I _ ?+,y-2 

+ 
n(n- I)@-2) 

N’ 
(.+‘-3+ . . . 1 e-Nf 

-;(F-r)"-'+!$!!(F-r)'-2 
n(lZ-;f”-2+F_r)“-3+_.. , 1 (31) 

The non-dimensional quasi-steady flux, Q, is given by 

Q- JzN X’-2 II . 
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F -0.20 

1.0 - 

5.0 
0.2 0.4 0.0 0.0 1.0 

- X 

- Exact 
Eq. (101 9 AGVW. 

4.0- -----___- Q#.$,juc, 
Slug ‘F --- 
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3.0 - 

0 
2.0 - -F 

1.0 - 

0 I I I I IL 
0 0.2 0.4 0.6 0.0 1.0 

X 

8 0.05 

=0.35 

FIG. 1. Axial variation of flux at different times. 

RESULTS AND DISCUSSION 

By setting the coefficients in the velocity profile, 
equation (4). equal to their respective values for this 
problem, namely, a, = 3, a, = -3/2, in equations 
(28) and (29), and in equation (30), one obtains the 
exact solution for the flux and bulk mean temperature, 
respectively. For the surface heat flux, this was also 
carried out for n = 3-6 in equations which, because 
of their length, were not included here for the sake of 
brevity. Results are also obtained, for these same 
cases, from the approximate analytical model being 
proposed herein, namely, equation (10) for the flux 
and the first two integrals in equation (26) for the 
bulk mean temperature. Note that the exact solution 
functions, which can be applied to any arbitrary 
&(F,X), and not just to the class 0, = bY being 
considered here, are given by equations (9) and (26). 

In addition, results were also found for the three 
approximate models used previously in the literature, 
namely, the slug flow, pure conduction and quasi- 
steady models. 

Looking at the plotted results, at F = 0.05, for the 
flux when 0, = bx in the lower half of Fig. 1, one 
sees trends for the various earlier approximate models 
which are also reflected in the figures for the other 
cases for n, n = 2-6. The slug flow model, because of 
its use of a velocity profile which gives velocities near 
the wall which are higher than the actual velocity 
profile, equation (4), yields a higher surface heat flux 
than does the exact solution and all the approximate 
models. The pure conduction model gives a smaller 
surface heat flux than the actual flux because of its 
use of zero velocity throughout the fluid thus remov- 
ing the convective energy transport mechanism from 
the situation. The quasi-steady approach, the bottom 
curve in the figure at F= 0.05 gives a much smaller 

/ 
3.0 / 

0 

2.0 ! / B,.BX’ / B / 

1.0 1 

FsO.05 

0.10 

-0.20 
F=O.35 

F = 0.05 

4.0 - - Exact / - 
Eq. (10) * Approx. Analytical 

0.10 

3.0 - 

0 0.20 * F 0.35 

2.0 - 

1.0 - 

0 
0 0.2 0.4 0.6 0.8 1.0 

X 

FIG. 2. Axial variation of flux at different times. 

flux than actually occurs because of its use of the 
relatively low surface coefficient of heat transfer for 
steady flow through an isothermal duct. This error is 
particularly large at the low times, such as F = 0.05, 

because of the very high energy transfer rates due to 
a thin thermal boundary layer at low values of F. For 
this case, 8, = bx, the approximate analytical model 
of this work gives the exact result, and hence, plots 
right on top of the exact solution. This results from 
the fact that our two-term approximation, equation 
(lo), is exact for the case of n = 1 and also. inciden- 
tally, is exact for the case of n = 0. At a large value 
of time, such as F = 0.35 in Fig. 1, the trends for the 
various approximate models are basically the same 
as previously described except for the quasi-steady 
solution which provides a better prediction than does 
the pure conduction solution. 

For the cases of n = 2, 3, and 6 in equation (27) 
surface heat flux results for the exact solution, and for 
the approximate model of this work, are given in 
Figs. l-4 for a number of different times F. Selected 
comparisons of the exact solution with the other 
approximate models are given in Figs. 1 and 4. As is 
evident from the figures, the approximate analytical 
model, even though it is not the exact solution for the 
cases of n = 2-6 as it was for n = 1, is essentially 
indistinguishable from the exact solution for the scale 
used on the graphs. Thus, only a few typical predic- 
tions, the circles, are shown for the approximate ana- 
lytical solution. One can discern a slight difference 
between exact and approximate analytical solutions 
in Fig. 4 at F = 0.35 where the approximate analytical 
prediction is slightly higher than the exact results. 
Hence, the two-term representation of the flux in the 
approximate analytical model, equation (IO), gives 
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Eq. (10) l Awmx. Analyticsi 0.10 
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0 0.2 0.4 0.6 0.8 1.0 

X 

FIG. 3. Axial variation of flux at different times. 

exceilent results even for the higher level harmonic of 
n= 6. 

Looking at the predictions of the other approximate 
models for n > 1 in the upper half of Figs. 1 and 
4, the general trends are the same qualitatively, as 
previously discussed for n = 1, but the errors are 
greater in magnitude for the higher values of n, 
such as n = 6, than for the case of n = 1. 

The comparisons of the exact solution for the bulk 
mean temperature with the approximate analytical 

4.0 

-EEuc( 
Eta (10) l Apgcox. 

-.-. wy 

am 

FsO.22 

0 

FIG. 4. Axial variation of flux at different times. 
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F*0.22 

0.20 

‘0.10 

.o.os 
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0 0.2 0.4 0.6 0.8 1.0 
X 

FIG. 5. Axial variation of bulk mean temperature. 

model of the present work is shown in Figs. 5 and 6. 
Again, the approximate model is also the exact solu- 
tion when n = 1 and, as was also the case- for the flux, 
is essentially coincident with the exact solution at the 
higher value of n. The other approximate models give 
significant error. 

CONCIJJSION 

An exact analytical solution has been found for the 
problem being considered, namely, u~teady thermal 
entry heat transfer within a parallel plate duct in the 
first time domain with 8, = bx”. An approximate ana- 

0.8 

0.6 e,=ax’ 

s” 
F~0.22 

0.4- 

0.2 - 

OI 0 a2 a4 0.6 a8 1~ x 
0.8 - -Exact 

Es 00) 0 Apmx. Adytic5l 

-------- 
:. 0.6 

__A rw 

tsf 
,’ 

.-.-. $1 e,=sx $3 

I f 1 1 t 
0 0.2 0.4 0.8 0.8 1.0 

X 

FIG. 6. Axial variation of bulk mean temperature. 
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lytical model has also been developed which yields 
results of very high accuracy, even for the higher level 
harmonic represented by n = 6 in 0, = bY’. Hence, 
this model should be able to be employed with high 
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CONVECTION THERMIQUE FORCEE VARIABLE DANS UN CANAL 

RQumGOn trouve une solution analytique exacte pour le transfert thermique variable, dans les premiers 
instants, pour un fluide s’ecoulant de facon laminaire, pleinement Ctablie dam une conduite, avec une 
temperature par&ale qui est brusquement changee selon 6, = &‘. La solution de l’equation fondamentale 
aux dkrivees partielles est obtenue par utilisation de la transform&e de Laplace et elle fournit le flux 
thermique variable B la paroi en fonction du temps et de la position en aval pour n = I H 6. Pour permettre 
des comparaisons, des solutions sont aussi obtenues pour plusieurs modeles approchh et nomtment, 

conduction pure, ecoulement piston, &tat permanent et un nouveau modele propose par Sucec. 

INSTATIONRARE ERZWUNGENE KONVEKTION IN EINEM KANAL 

Zusammenfassung-Der instationare Wiirmeiibergang in einer laminaren, voll ausgebildeten Striimung in 
einem Kanal, dessen Wandtem~ratur sich pliitxlich gem5B 8, = bx” Bndert, wird f&r einen ersten 
Zeitabschnitt exakt analytisch berechnet. Die zugrundeliegende pat-belle ~fferentialgleichung wird durch 
die Anwendung der Laplace-Transformation gel&t. Dabei ergibt sich die zeitlich veriinderliche Ober- 
flIchenwPrmestromdichte als Funktion von Zeit und Ott entlang des Kanals fiir n = I bis 6. Zu Ver- 
gleichsxwecken werden such Liisungen fiir eine Anzahl von Niiherungsmodellen bestimmt, nimlich fur 
reine W~rmeleitung, Kol~nstr~mung, qua-s~tion~ren &stand sowie filr ein neues Model], das von 

Sucec vorgeschlagen worden ist. 

TlTJIOlTEPEHOC I-IPM HECTAI.@LOHAPHOtt BbIHymAEHHOti KOHBEKL@iH B KAHAJTE 

Armoramm-Tlonpeno romioe amutsrrmmcxoe pemenxre IUI* nasaxbrrofi cranmi ffecramrotraprioro Ten- 
nonepenoca ~rrnmcru B yc.noa.uax n~napworo n~mmcrbio pa3mr~oro reqemra B Xaflanc npn hmro- 
BeHHOM H3MeHeHHH TeMnepaTypbI CTtHLR A0 f?, = bx”. &lOBHOC rml$+epeRua~FlOC ypaBmme u 

‘IaClWbKX lQXNi3BOAHlSX ~UraCTCt? C flOMOUibE0 npto6pa30BaMZiS JkUUiC% Hecratmursaprme errascHue 
rennoaoro rroroxa uonyserro aax +yriarnra apebsenii n xoopmsrrarbt a tanane npu n = l-6. J&m cpamte- 
XHR rasxc Hai%AeHu pexumis ana pena nprr6~emmrx nro&ene& a ~~ettH0, ¶rcro#t Tcimoi~p~~oA- 

HOCZH, NOJI3J”lCrO B KBa3HCTamOHapIiOrO TeuCHHfi, H MII HOBOit MOAeJIEl, ~AJlOXCKHOit CaCCXOM. 


